2. If the width of the sandbox was to decrease and the area was to remain 200 square feet, how would the length change?

*

Solve P = 21 + 2w for 2

100=P 25 = W 1. If you have 100 feet of lumber to construct the sides of a sandbox, and the width is set at 25 feet, how long can the sandbox be?

*

2. If the width of the sandbox was to increase, but the perimeter was to remain at 100 feet, how would the length have to change?

Length would decrease

$$\frac{c}{c} = 2l + 2w$$

$$\frac{P-2N+2W}{P-2W}$$

$$\frac{P-2W-2W}{2}$$

$$\frac{P-2W-2W}{2}$$

$$\frac{P-2W-2W}{2}$$

$$\frac{100}{2} - w = 1$$

Inc from 25

 $50 - 35 = 1$

Solve V=lwh for w

- 1. In designing a box to have a volume of 500 cm length 10, and height 15, what is the width?
- 2.) If the volume of the box was to increase, but the length and height were to remain unchanged, how would the width have to change? width

		1	× 15	<u>500</u>
the volume of the is to increase, but igth and height were ain unchanged, how the width have to width	l = 10 h = 15 V = 600	600 = w 1000 = w	w=4	3\frac{1}{3}

V=lwh

V = W

Solve $A = \frac{1}{2}bh$ for h

If a triangle has an Area of 100 cm and a A base of 20 cm what the height of the

$$(2)A = \frac{bh}{2ab}$$
Area of a A
$$A = Area$$

$$b = base$$

$$h = height$$

$$\frac{2A = h}{b} \Rightarrow \frac{2(100)}{20} = h$$

$$h = \frac{200}{20} = 10$$

Solve
$$A = \frac{1}{2}h(b_1 + b_2)$$
 for b_2

If a trapezoid has an area of 200 cm, a height of 10 cm, and a base of 5 cm, how big must the other base be.

V: Volume

$$\frac{2(200)}{10} - 5 = b_2$$

$$40 - 5 = b_2$$

$$35 = b_1$$